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ABSTRACT

BUCHANAN, T. S., D. G. LLOYD, K. MANAL, and T. F. BESIER. Estimation of Muscle Forces and Joint Moments Using a
Forward-Inverse Dynamics Model. Med. Sci. Sports Exerc., Vol. 37, No. 11, pp. 1911-1916, 2005. Purpose: This paper presents a
forward dynamic neuromusculoskeletal model that can be used to estimate and predict joint moments and muscle forces. It uses EMG
signals as inputs to the model, and joint moments predicted are verified through inverse dynamics. The aim of the model is to estimate
or predict muscle forces about a joint, which can be used to estimate the corresponding joint compressive forces, and/or ligament forces
in healthy and impaired subjects, based on the way they activate their muscles. Methods: The estimation of joint moments requires
three steps. In the first step, muscle activation dynamics govern the transformation from the EMG signal to a measure of muscle
activation—a time-varying parameter between 0 and 1. In the second step, muscle contraction dynamics characterize how muscle
activations are transformed into muscle forces. The final step requires a model of the musculoskeletal geometry to transform muscle
forces to joint moments. Each of these steps involves complex, nonlinear relationships. Results: An application is provided to
demonstrate how this model can be used to study the forces in the healthy ankle during dynamometer trials and during gait. The
model-predicted estimates of joint moment were found to match experimentally determined values closely. Conclusion: Neuromus-
culoskeletal models that use EMG as inputs can be employed to accurately estimate joint moments. The muscle forces predicted from
these models can be used to better understand tissue loading in joints, and to provide in vivo estimates of tensile ligament forces and
compressive cartilage loads during dynamic tasks. This tool has great potential for aiding in the study of injury mechanisms in sports.
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here are two traditional modeling approaches to

studying the biomechanics of human movement: for-

ward dynamics and inverse dynamics. Either ap-
proach can be used to determine joint kinetics (e.g., estimate
joint moments during movements), but they each have lim-
itations if used to study muscle contributions to specific
sports or exercises.

In forward dynamics, one begins with a measure or esti-
mate of neural command. This is then transformed through
a three-step process to obtain joint moments (Fig. 1). Muscle
activation dynamics transform the neural signal to a mea-
sure of muscle activation, which is a time varying parameter
between zero and one. Muscle contraction dynamics trans-
form the muscle activations into muscle forces. Finally,
musculoskeletal geometry transforms muscle forces to joint
moments. Once the joint moments are determined, the equa-
tions of motion allow the joint moments to be transformed
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into joint movements. Each of these steps involves complex,
nonlinear relationships.

In inverse dynamics, the problem is approached from the
opposite end (Fig. 1). Here we begin by measuring position
and the external forces acting on the body. For example, in
gait analysis, the position of tracking targets attached to the
subjects’ limbs are recorded using a camera-based video
system and the external forces are recorded using a force
platform. The tracking targets on adjacent limb segments are
used to calculate relative position and orientation of the
segments, and from these, joint angles are calculated. These
data are differentiated to obtain velocities and accelerations.
The accelerations and the information about other forces
exerted on the body (e.g., the recordings from a force plate)
can be input to the equations of motion to compute the
corresponding joint reaction forces and moments. If the
musculoskeletal geometry is included, muscle forces could
then, in theory, be estimated from the joint moments. How-
ever, the problems of cocontraction and redundancy make
this difficult.

Although widely used, there are several disadvantages to
using inverse dynamics if one is interested in examining
muscle function in sports and exercise. First, the moments
and resultant joint reaction forces are net values. For exam-
ple, if a person activates his hamstrings, generating a
25-N-m flexion moment, and at the same time activates the
quadriceps, generating a 20-N-m extension moment, the
inverse dynamics method (if it is perfectly accurate) will
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FIGURE 1—Hybrid forward-inverse dynamics approach to estimating joint moments. Beginning at the left, the forward dynamics approach starts
with the neural command and then uses muscle activation dynamics, muscle contraction dynamics, and musculoskeletal geometry to estimate the
joint moments. These joint moments are also estimated using inverse dynamics (beginning at the right). The error in the joint moment is used to

adjust the model parameters during the training phase of the model.

yield a net knee flexion moment of 5 N-m. This is very
important because cocontraction of muscles is very com-
mon; yet this approach is widely used to estimate muscular
contributions. Second, another limitation of the inverse dy-
namics approach occurs when one tries to estimate muscle
forces. Because there are multiple muscles spanning each
joint, the transformation from joint moment to muscle forces
yields a large number of possible solutions and cannot be
readily determined. Finally, if one wishes to examine mus-
cle activations, there is no current model available that will
do this inverse transformation from muscle forces, if muscle
forces could be estimated in the first place. Thus, inverse
dynamics is not a good method to use if one wishes to
include neural activation in the model.

Forward dynamics approaches also have limitations. First,
they require estimates of muscle activation. Either one must
begin with experimentally based measures of EMG or use a
mathematically based optimization approach to estimate neural
command. EMG-driven models of varying complexity have
been used recently to estimate moments about the knee
(12,13,18), the lower back (17,21), the wrist (3), and the elbow
(16). The optimization approach, although growing in use
(1,19), is limited for studying pathology because it does not
include any measure of how a particular person activates his
muscles. That is, the cost function chosen may not reflect the
actual muscle activation pattern used by a person, especially
one with motor impairments.

Second, the transformation from muscle activation to
muscle force is difficult, as it is not completely understood.
Most models of this are based on phenomenological models
derived from A. V. Hill’s classic work (10). Another diffi-
culty is that of determining muscle-tendon moment arms
and lines of action. These are difficult to measure in cadav-
ers, and even harder to determine with accuracy in a living
person. Finally, estimations of joint moments are prone to
error because it is difficult to obtain accurate estimates of
force from every muscle, and there is often no way to verify
whether the forces predicted are correct.

In this paper we present a hybrid approach that uses an
EMG-driven forward dynamics model to estimate muscle
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forces and, from those, joint moments at the ankle. The joint
moments were also estimated using inverse dynamics and
the parameters in the model were adjusted so that the joint
moments from the forward and inverse approaches were in
close agreement. Once the parameters were adjusted, the
model was used to estimate muscle forces about the ankle
for novel tasks. From knowledge of all of the muscle forces
about the ankle and their lines of action, one can estimate
compressive forces (i.e., in cartilage) and tensile forces in
soft tissues (i.e., ligaments).

METHODS

In this section, the theoretical background of the model
will first be presented, followed by a description of the data
acquisition procedures.

Muscle activation dynamics. The transformation
from EMG to muscle activation is complex. After collection,
the initial processing of the EMG signal requires that the
signals be rectified and low-pass filtered (fourth-order Butter-
worth filter, cutoff frequency 8 Hz) to form a linear envelope.
The signals are then normalized by dividing them by the EMG
obtained during a maximal voluntary contraction. The resultant
signal is now smooth, between 0 and 1 in magnitude. However,
it is still lacking as a representation of muscle activation for
three reasons. First, the signal is out of phase with muscle force,
as there is a delay between the time of the EMG and that of the
corresponding force generation that must be taken into account.
This electromechanical delay has been reported to range from
10 ms to about 100 ms (4).

Second, muscle activation is known to be a function of its
recent history (24). That is, the transformation can be mod-
eled as a second-order differential equation. This has be
represented in a discretized form (11,21) as:

u(t) = ae(t-d) — By u(t-1) — B u(t-2) [1]

where d is the electromechanical delay and «, 3,, and 3, are
the coefficients that define the second-order dynamics.
These parameters (d, o, ;, and 3,) map the normalized
EMG values, e(t), to the neural activation values, u(t). This

http://www.acsm-msse.org



filter should have unit gain so that neural activation does not
exceed 1, and to ensure this, the following equation has to
be met: « — B, — B, = l. In addition, there are several
constraints that should be included if the equations are to be
stable (see Buchanan et al. (2) for a discussion of equation
stability criteria).

Finally, it has been shown that isometric EMG is not
necessarily linearly related to muscle force (8,22,26). This
nonlinearity is not characterized by the u(t) term above. For
example, Woods and Bigland-Ritchie (22) showed that
whereas some muscles have very linear isometric EMG-—
force relationships, the relationships for other muscles is
nonlinear, especially at lower forces (up to about 30%).
Manal and Buchanan (14) have characterized this as a
logarithmic relationship for forces less than 30% and as a
linear one for higher force levels.

a(t) = d In(cu(t) + 1), 0=u(t)< ~03

a(t) = mu(t) + b, ~03=u(<1 (2]

where u(t) is the neural activation (from above) and a(t) is
the muscle activation. The coefficients ¢, d, m, and b can be
solved for simultaneously and reduced to a single parameter,
A (14).

Muscle contraction dynamics. A Hill-type muscle
model is used to estimate the force that can be generated by
the contractile element of the muscle fiber, with the general
form of the function given by:

F(0) = fiv) fDa() F" (31

where F ™ is the time varying muscle fiber force, f{v) is the
normalized velocity—dependent fiber force (i.e., the force—
velocity relationship), f(1) is the normalized length—depen-
dent fiber force (i.e., the length—tension relationship), a(t) is
the time-varying muscle activation (as described above),
and F )™ is the maximum isometric muscle fiber force.

Each of these functions is, of course, somewhat complex.
For example, the normalized length—tension relationship,
), is classically characterized only for muscles at maximal
isometric force. However, it has been reported that optimal
fiber lengths—the fiber lengths at which the forces peak—
increase as activation decreases (7). This creates a skewing
of the length—tension relationship that has been mathemat-
ically characterized by Lloyd and Besier (11).

Another complexity that must be accounted for is the
tendon stiffness. As the muscle contracts, the tendon is
stretched, which loads the muscle, causing it to lengthen.
Hence, muscle force must be solved for iteratively, as de-
scribed by Buchanan et al. (2).

Pennation angle should also be taken into account, as it
affects the angle of the force transmission. A model that
assumes that muscle has constant thickness and volume as it
contracts has been shown to characterize the pennation
angle behavior well (20).

Musculoskeletal geometry. To compute both the
length and the moment arm for a musculotendonous unit, a
musculoskeletal model is required. These models must ac-
count for the way musculotendon lengths and moment arms
change as a function of joint angles, and include information
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about the geometry of the bones and the complex relation-
ships associated with joint kinematics (5,6).

Once all of the muscle forces are computed and their
corresponding moment arms are estimated, their contribu-
tions to the joint moment can be found by multiplication. If
this is done for all of the muscles at a particular joint, the
corresponding joint moment can be estimated by summing
these values.

Model parameters. There are several physiological
parameters required by the models. Muscle moment arms
and lengths were calculated using the model of Delp et al.
(6). Optimal fiber length, tendon slack length, and pennation
angle are measured from cadaver studies (23). Of these three
parameters, tendon slack length is the most difficult to
measure, but it can be approximated using a numerical
method (15). Maximal muscle force can be estimated from
measurements of physiological cross-sectional areas of
muscles, which can then be scaled uniformly to match
maximal joint strength measures made on a dynamometer
(12).

Other parameters in the model cannot be readily deter-
mined, such as those that describe muscle activation dy-
namics. These parameters must be determined mathemati-
cally by comparing the estimated joint moments from the
forward dynamics calculations with the inverse dynamics
determination of the joint moments. These should be the
same, and model parameters can be adjusted until the error
between these two is minimized. This is done using non-
linear optimization. We use a simulated annealing algo-
rithm, as it is designed to reduce the chances of converging
to a local minimum.

Once the model’s parameters are adjusted to minimize the
error, the model can be used to predict the joint moments
and muscle forces during novel tasks—tasks that were not
used to minimize the model error. The accuracy of the
model can be determined by comparing its predicted esti-
mates of joint moments with the experimentally determined
values.

Parameters are adjusted to tune or calibrate the model for
each subject (Fig. 2). The exact number of parameters that
are to be adjusted using this approach can vary from about
one to six per muscle (9). In the application that follows for
the ankle, 22 parameters were adjusted. These included the
coefficients in equations 1 and 2, as well as the values for
each muscle’s optimal fiber length (the length at which the
length—tension curve is at a peak), the tendon slack length
(the length at which the tendon begins to assume load), and
two global gain factors for flexion and extension. Physio-
logically based parameters are allowed to vary within one
standard deviation of the literature-reported values (23);
other parameters are bounded by stability criteria (2).

Experimental procedures. EMG were collected
from three subjects using surface electrodes for the tibialis
anterior, medial gastrocnemius, and lateral gastrocnemius,
and fine wire intramuscular electrodes were used for the
soleus. All subjects gave written informed consent and the
protocol was approved by our human subjects review board.
A telemetered system (Noraxon 9000) was used to transfer
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FIGURE 2—Simplified flowchart of the modeling procedure. The EMG is processed to obtain muscle activation, whereas the joint angle data are
used to obtain musculoskeletal lengths, velocities, and moment arms. Together these are put into a Hill-type model to estimate musculotendon forces,
and these, in turn, are multiplied by their moment arms and summed to obtain the joint moment. In the training phase (dotted box), the estimated
moment is compared with the measured moment. Parameters in the model are adjusted to minimize the difference between measured and predicted
joint moments. One the optimal parameters are found and the model is tuned for the subject, the training part of the model is removed; it can be

used to predict joint moments for novel tasks.

the EMG signals to a custom-made amplifier with band pass
filtering of 30-500 Hz. The signals were then digitally
sampled at 1 kHz.

EMG were collected during two types of trials: those per-
formed in a dynamometer, and those during gait. Dynamom-
eter trials included isokinetic concentric trials at 60, 120, and
150°s~" (150°s~ " is the maximum value for ankle angular
velocity in the stance phase). The range of motion in the
isokinetic trials was 5° dorsiflexion to 20° plantar flexion,
which is the average range of motion of the ankle joint during
gait. Preliminary data were collected during maximum volun-
tary contractions for normalization purposes.

To collect data during gait trials, we used a Qualisys
motion capture system, using six Pro-reflex cameras, and an
AMTI force plate. Ground reaction forces and spatial posi-
tions of the foot, shank, and thigh were calculated using a
force plate and the motion analysis system. The ankle mo-
ment was calculated using inverse dynamics. Subjects were
instructed to simply walk at a self-selected pace.

RESULTS

In this study, EMG were collected from four muscles and
the resulting joint moments were estimated. The parameters
for the model were then adjusted to minimize the difference
between the estimated moments (from forward dynamics)
and the measured moments (from inverse dynamics) (Fig.
3). The root mean squared error was 1.4 N-m (R% = 0.997).

The model was also used to predict the moments during
anovel task. Without changing the parameters of the model,
the EMG and joint angles from a novel gait trial were input
to the model, and the corresponding moment was predicted
and compared with the measured moment determined using
inverse dynamics (Fig. 4). The root mean squared error was
7.1 N'm (R* = 0.94). The corresponding muscular forces
are an intermediate step in the model (Fig. 5).
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DISCUSSION

We have presented a model to estimate joint moments
from EMG signals using a hybrid forward-inverse dynamic
approach. This approach uses a Hill-type model that ac-
counts for force—length and force—velocity relationships.
The model results are verified by comparing the predicted
joint moments with the measured moments.

These models have tremendous importance in estimating
muscle forces during various tasks—something that is dif-
ficult to achieve with other modeling approaches. For ex-
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FIGURE 3—The model’s ability to estimate ankle joint moments
immediately after training on a concentric trial on a Biodex dynamom-
eter. The model parameters were adjusted so that the error between
the estimated and measured moments was minimized. Note that al-
though the match is good, the number of parameters adjusted to
achieve this fit is relatively low.
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FIGURE 4—The model’s ability to predict ankle joint moments dur-
ing gait. Positive joint moments correspond to dorsiflexion. In this
case, the parameters of the model were adjusted using data from a
different trial, and then the model was used predict the moments in this
gait trial. This demonstrates the model’s ability to predict moments
from a novel task using only EMG and kinematic information (i.e.,
without parameter readjustment).

ample, optimization-based models may be able to predict
forces, but they do not readily account for differences in an
individual subject’s neuromuscular control system, which
may be impaired.

The accuracy of this approach is greatly influenced by the
accuracy and completeness of the anatomical data, which
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FIGURE 5—The force contribution of each muscle to the total joint
moment. The muscle forces are multiplied by their respective moment
arms and summed to yield the predicted moment in Figure 4. The
muscles shown are the tibialis anterior (TA), medial gastrocnemius
(MG), lateral gastrocnemius (LG), and soleus (SOL).
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must include a full model of the musculoskeletal geometry.
In this example, a simple model of the ankle was used with
only four muscles and a single degree of freedom. More
elaborate models have been developed at other joints. For
example, Lloyd and Besier (11) used 13 muscles in their
model of the knee, and Manal et al. (16) used seven muscles
in their model of the elbow. The error in the predictions of
joint moment will be related to the completeness of the
model, and this model of the ankle yielded errors of around
7 N'm in predicting joint moments during gait, which had
peak ankle moments of around 80 N-m. By comparison, the
more detailed model of Lloyd and Besier (11) demonstrated
errors of around 12 N'm during more demanding running
and cutting tasks that had peak knee moments of around
200 N-m.

The more parameters that are allowed to vary, the better
the fit will be between the estimated joint moment and the
measured joint moment. However, that does not mean that
it is best to vary as many parameters as possible (9). Models
that have many parameters generally have little predictive
ability. Zheng et al. (25) created a model that estimates
muscle forces from EMG, and it yields predicted joint
moments that are very close to those determined using
inverse dynamics. But their model requires that the param-
eters are determined or reevaluated at each instant in time.
That is, the model is accurately adjusted to fit the data at
each time step. But with many time steps, and perhaps
hundreds or thousands of parameters to adjust during the
course of a single movement, it is not unlikely that accurate
predictions could be made. The problem with this approach
is that the model is “overfit.” This means that the model
cannot be used in any predictive way. If parameters must be
recalculated or adjusted for each trial, the model cannot be
used to predict novel data. Although this may not have been
a problem for Zheng et al.’s application, it means that such
models will have limited predictive power, especially when
used to predict a variety of different tasks such as walking,
jogging, and jumping.

A predictive model is one that can be calibrated with
some data and appropriate parameters adjusted within rea-
sonable amounts. Those parameters that correspond to phys-
ically established measurements should not be allowed to be
adjusted beyond physiological norms. Then, once the pa-
rameters are adjusted, the model can be used with novel data
without further adjustment of the parameters. In this way,
the robustness of the model’s ability to predict the correct
answers can be ascertained.

The advantage of the hybrid approach presented here is
that the joint moments from the inverse solutions can be
used to cross validate the forward modeling solutions, of
course within the error associated with inverse dynamic
methods. The calibrated forward model produced good pre-
dictions of the inverse solution of the ankle flexion-exten-
sion moments. Similar results have been reported for studies
of the knee (11) and elbow (16) using this approach. In the
Lloyd and Besier study (11), it was found that by keeping
muscle—tendon parameters constant and only permitting the
EMG-to-activation parameters to be adjusted, the model
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was able to predict trials 2 wk apart with no loss in predic-
tive ability. Once the model was calibrated and shown to be
able to predict joint moments very well, they had confidence
in the estimates of muscle forces and joint moments. They
were then able to use the calibrated model to estimate loads
experienced by the ligaments in the knee during the tasks
performed by the subjects.

This modeling method is currently being used to de-
termine ligament and joint compressive forces in walk-
ing, running, and cutting maneuvers. (Joint contact forces

REFERENCES

1. Anperson, F. C., and M. G. Panpy. Dynamic optimizationof
human walking. J. Biomech. Eng. 123:381-390, 2001.

2. Bucuanan, T. S., D. G. Lroyp, K. ManNaL, and T. F. BESIER.
Neuromusculoskeletal modeling: estimation of muscle forces and
joint moments and movements from measurements of neural com-
mand. J. Appl. Biomech. 20:367-395, 2004.

3. Buchanan, T. S., M. J. Moniz, J. P. DEwaLD, and W. ZEvV RYMER.
Estimation of muscle forces about the wrist joint during isometric
tasks using an EMG coefficient method. J. Biomech. 26:547-560,
1993.

4. Corcos, D. M., G. L. GortLIEB, M. L. LATASH, G. L. ALMEDIA, and
G. C. AcarwaL. Electromechanical delay: An experimental arti-
fact. J. Electromy. Kines. 2:59-68, 1992.

5. Derp, S. L., and J. P. LoaN. A graphics-based software system to
develop and analyze models of musculoskeletal structures. Com-
put. Biol. Med. 25:21-34, 1995.

6. DELp, S. L., J. P. LoaN, M. G. Hov, F. E. Zasac, E. L. Topp, and
J. M. RoseN. An interactive graphics-based model of the lower
extremity to study orthopaedic surgical procedures. IEEE Trans.
Biomed. Eng. 37:757-767, 1990.

7. GuiMARAES, A. C., W. HErzogG, T. L. ALLINGER, and Y. T. ZHANG.
The EMG-force relationship of the cat soleus muscle and its
association with contractile conditions during locomotion. J. Exp.
Biol. 198(Pt 4):975-987, 1995.

8. HeckATHORNE, and CW, D. S. CHILDREss, Relationships of the
surface electromyogram to the force, length, velocity, and con-
traction rate of the cineplastic human biceps. Am. J. Phys. Med.
60:1-19, 1981.

9. HEeINE, R., K. MaNAL, and T. S. BucHanan. Using Hill-type muscle
models and EMG data in a forward dynamic analysis of joint
moment: evaluation of critical parameters. J. Mech. Med. Biol.
3:169-186, 2003.

10. HL, A. V. The heat of shortening and the dynamic constants of
muscle. Proc. Royal Soc. London B. 126:136-195, 1938.

11. Lroyp, D. G., and T. F. Besier. An EMG-driven musculoskeletal
model to estimate muscle forces and knee joint moments in vivo.
J. Biomech. 36:765-776, 2003.

12. Lroyp, D. G., and T. S. BucHaNAN. A model of load sharing
between muscles and soft tissues at the human knee during static
tasks. J. Biomech. Eng. 118:367-376, 1996.

13. Lroyp, D. G., and T. S. BucHaNAN. Strategies of muscular support
of varus and valgus isometric loads at the human knee. J. Biomech.
34:1257-1267, 2001.

1916  Official Journal of the American College of Sports Medicine

are different than the ground reaction forces determined
from inverse dynamics.) This holds great promise as a
method for studying in vivo tissue forces during sports
and exercise.

This work is supported, in part, by NIH grants R0O1-AR46386,
R01-HD38582, and P20-RR16458, as well as from the Australian
NHMRC-991134 and NHMRC-254565, West Australian MHRIF, and
AFL Research and Development Board. We thank Shay Cohen for
his technical assistance with the data acquisition and ankle model
development.

14. ManaL, K., and T. S. BUuCHANAN. A one-parameter neural activa-
tion to muscle activation model: estimating isometric joint mo-
ments from electromyograms. J. Biomech. 36:1197-1202, 2003.

15. ManaL, K., and T. S. BucHaNaN. Subject specific estimates of
tendon slack length: a numerical method. J. Appl. Biomech. 20:
195-203, 2004.

16. ManNaL, K., R. V. GonzaLEz, D. G. LLoyp, and T. S. BuCHANAN. A
real-time EMG-driven virtual arm. Comput. Biol. Med. 32:25-36,
2002.

17. McGiLL, S. M., and R. W. NorwmaN. Partitioning of the L4-L5
dynamic moment into disc, ligamentous, and muscular compo-
nents during lifting. Spine 11:666-678, 1986.

18. OLNEY, S. J., and D. A. WINTER. Predictions of knee and ankle
moments of force in walking from EMG and kinematic data. J.
Biomech. 18:9-20, 1985.

19. Panpy, M. G., and F. E. Zajac. Optimal muscular coordination
strategies for jumping. J. Biomech. 24:1-10, 1991.

20. Scorr, S. H., and D. A. WINTER. A comparison of three muscle
pennation assumptions and their effect on isometric and isotonic
force. J. Biomech. 24:163—-167, 1991.

21. THELEN, D. G., A. B. Scuurtz, S. D. Fassors, and J. A. ASHTON-
MILLER. Identification of dynamic myoelectric signal-to-force
models during isometric lumbar muscle contractions. J. Biomech.
27:907-919, 1994.

22. Woobs, J. J., and B. BicLaND-RITcHIE. Linear and non-linear
surface EMG/force relationships in human muscles. An anatom-
ical/functional argument for the existence of both. Am. J. Phys.
Med. 62:287-299, 1983.

23. YamacucHn G. T., A. G. U. Sawa, D. W. MoraN, M. J. FESSLER,
and J. M. WINTERS. A survey of human musculotendon actuator
parameters. In: Multiple Muscle Systems: Biomechanics and
Movement Organization, J. M. Winters and S. L. Woo (Eds.). New
York: Springer-Verlag, 1990, pp. 717-773.

24. Zaiac, F. E. Muscle and tendon: properties, models, scaling, and
application to biomechanics and motor control. Crit. Rev. Biomed.
Eng. 17:359-411, 1989.

25. ZHeNG, N., G. S. FLEISIG, R. F. EscaMILLA, and S. W. BARRENTINE.
An analytical model of the knee for estimation of internal forces
during exercise. J. Biomech. 31:963-967, 1998.

26. ZuNiGaA, E. N., and E. G. Stmons. Nonlinear relationship between
averaged electromyogram potential and muscle tension in normal
subjects. Arch. Phys. Med. Rehabil. 50:613—620, 1969.

http://www.acsm-msse.org



